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Summary

In this report we summarize numerical results of supersonic flows over open cavities in

the setting of a dual-mode ramjet/scramjet engine. To calculate the unsteady cavity flows, we

employ the Space-Time Conservation Element and Solution Element (CESE) method, a novel

numerical method based on a unified treatment of space and time in calculating flux balance.

Supersonic cavity flows with and without fuel injection are studied to understand the

mechanisms of mixing enhancement and flame holding by cavities. Without injection,

numerical results compared favorably with the experimental data for dominant frequencies and

time-averaged pressure coefficients inside the cavities. With an upstream injection, the flow

oscillations are drastically suppressed. In a downstream injection arrangement,

cavity-generated acoustic waves and vortices greatly enhance fuel/air mixing. Numerical

results show that the CESE method provides high-fidelity numerical results of unsteady flows

in the advanced scramjet engine concept.
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1. Introduction

Fuel injection, ignition, and flameholding are challenging issues for high-speed combustion. In

a viable scramjet engine, the fuel injection method employed must provide rapid fuel/air

mixing with minimum total-pressure loss in the airstream. A stable flameholding system under

a wide range of operating conditions is critical to sustain the supersonic combustion. Recently,

cavity-based flameholders, an integrated mixing-enhancement and flameholding approach,

have attracted considerable attention in the scramjet community. Under suitable conditions,

flow recirculation, or the trapped vortices, significantly increases the flow residence time of the

fluid entering the cavity. A pilot flame could be set up inside the cavity to provide a pool of hot

chemical radicals, which in turn would reduce the ignition delay of the air/fuel mixture in

airstream and thus sustain high-speed combustion.

High-speed cavity flows are inherently unsteady, involving both broadband small scale

fluctuations typical of turbulent flows, as well as distinct resonance with harmonic properties in

its frequencies and amplitudes. In the past, it has been demonstrated that the aspect ratio of the

cavity and free stream flow conditions are the critical parameters dominating the complex flow

features, including boundary layer separation, compressible free shear layer with shedding

vortices, linear/nonlinear acoustic waves, and complex shock and expansion waves interacting

with vortices and acoustic waves.

In the setting of wheel wells and bomb bays, previous studies for high-speed cavity

flows showed that cavity flows could be categorized into the following two groups: (i) open

cavity flows, when L/D < 7-10, and (ii) closed cavity flows, when L/D > 7-10, where L

denotes the length of the cavity, and D the depth. In flows over cavities of large aspect ratios

(L/D > 7-10), the separated free shear layer emanating from the upstream corner of the cavity

reattaches to the bottom wall of the cavity and results in two separated recirculation zones near

the two corners between the lateral walls and the cavity floor. The resultant low pressure zones

at the lower corners and high pressures on the cavity floor, where the shear layer reattaches,

lead to significant drag and pressure loss of the airstream. In this case, mass addition/ejection

into/from the cavity by aerodynamic unsteadiness is low to moderate, and the flow is referred to

as "closed."
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On the other hand, flows over cavities with smaller aspect ratios, L/D < 7-10, result in

reattachment of the free shear layer to the rear bulkhead of the cavity. The impingement of the

free shear layer on the rear lateral wall causes violent unsteady motions and results in

significant periodical mass addition/ejection near the rear bulkhead of the cavity, and the flows

are referred to as "open." The wave patterns of open cavity flows could be further categorized

into (i) transverse mode for very short cavities, L/D =1 , and (ii) longitudinal mode for longer

cavities, e.g., 2-3 < L/D < 7-10. In short cavities, L/D < 2, only one main vortex inside the

cavity is sustained by the driving shear layer spanning the top of the cavity. The up and down

motions of the single main recirculation bubble generate acoustic waves, which by and large

propagate in the direction perpendicular to the free shear layer, provided the free stream is

transonic. The propagating waves are referred to as in a transverse mode. On the other hand,

when the cavity is longer, 2-3 < L/D < 7-10, multiple moving vortices occur inside the cavity

leading to complex interactions among trapped vortices, propagating and rebounding pressure

waves, and the flapping free shear layer. In general, the rebounding pressure waves, while

interacting with the free shear layer, drastically amplify the growth rate of the free shear layer,

which in turn sheds enormous vortices propagating towards and impinging on the aft wall of the

cavity. Due to propagating vortices in the streamwise direction and the rebounding pressure

waves, prevalent acoustic waves propagate in the longitudinal direction outside the cavity into

the downstream area. If the airstream is transonic or subsonic, the acoustics would transversely

propagate into the upstream areas.

In the setting of supersonic combustion inside a scramjet engine, trapped vortices inside

cavities could be useful for flame holding. Moreover, cavity resonance, which produces

periodic mass addition/expulsion with large flow structures, could be useful for mixing

enhancement. Simultaneously, cavity drag must be minimum, e.g., much less than that of a

bluff body, and thus only causes acceptable pressure loss. Gruber et al. [1, 2] have developed a

dual-mode ramjet/scramjet engine concept, which is envisioned to use hydrocarbon fuels for a

flight regime of Mach numbers from 3 to 6 - 9. In their supersonic combustors [1, 2], open

cavities with aspect ratios about 5 < L/D < 8 have been tested in conjunction with various fuel

injection schemes. Numerical simulation of cavity flows has been conducted by Baurle et al.

[3]. The results showed that the cavities have great potential to be a viable combined

flameholder/mixing enhancement device for scramjet engine combustor. Similar ideas have
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also been independently proposed and tested by Yu et al. [4]. In particular, Yu et al. [4] has

tested supersonic flows passing multiple cavities. Some of recent results have been

summarized by Ben-Yaker and Hanson [5].

In the past, extensive experimental and theoretical studies on cavity flows have been

conducted for applications in wheel well and bomb bay, and flow characteristics such as the

oscillation frequency and amplitudes at various locations in the cavity have been reported

[6-11]. However, it is difficult to directly apply this knowledge base to cavity flows for the

advanced scramjet engines due to much shorter length/time scales in scramijet engine.

Additional complexity associated with fuel injection also warrants further studies because

cavity flows and the associated acoustics would be drastically changed by the fuel injection

schemes employed. In particular, inherent oscillations of cavity flows may be significantly

suppressed by an upstream injection [4, 9-11].

In the present report, we will focus on time-accurate calculation of supersonic cavity

flows in the setting of a dual mode ramjet/scramjet engine combustor [1, 2]. The objectives of

the present study are: (i) to validate the numerical results by assessing the calculated

frequencies and amplitudes of pressure oscillations and compared them with previous reported

data; (ii) to assess the fuel/air mixing enhancement based on applying upstream as well as

downstream injection to cavity flows; and (iii) to demonstrate the capabilities of the CESE

method for capturing complex flow features of the supersonic cavity flows.

The rest of the report will be organized as follows. Chapter 2 reviews the model

equations to be solved by the CESE method. Detailed derivation for the flow equations of the

gas mixtures is presented. Chapter 3 provides background information of the CESE method.

Chapter 4 shows numerical solutions, including comparison between the numerical results and

previously reported data. Moreover, we will show the effects by both upstream and downstream

injection on pressure oscillations, acoustics, and vortices, leading to effects on fuel/air mixing

and flameholding. We then offer concluding remarks and provide cited references.
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2. Governing Equations

In this chapter, comprehensive discussions are provided for the governing equations of gas

mixtures. Although, two-dimensional solutions will be provided in Chapter 3, we will focus on

one-dimensional equations with detailed derivation. Extension to multi-dimensional flow

equations is straightforward and will only be briefly illustrated at the end of this chapter.

2.1 Mixtures of Thermally Perfect Gases

Consider a mixture of N different thermally perfect gas species, which generally are not

calorically perfect, i.e., the specific heats of each species is not constant. Let the species be in

thermal equilibrium with each other. As such all species share the common mixture absolute

temperature T and each individual gas species i (i = 1,2,..., N) satisfies the perfect gas law

Pi = pPT (2.1)

Here PP , p ,, and R, are the partial pressure, the mass density, and the gas constant of species i,

respectively. Note that A. =P k/ M, i = 1,2,..., N, with Rk, and M,, respectively, being the

universal gas constant and the molecular weight of species i. In addition, it is assumed that the

static pressure p of the mixture can be determined using Dalton's law, i.e.,

N N

N NT-]=T pR, (2.2)
i=1 i=1

To proceed, a set of definitions is given in the following. The mass fraction of species i is

def p(
Yi = -"(2.3)

P

where p is the mass density of the mixture, i.e.,

def N

p = jp, (2.4)

Note that, by definition,

YY=1 (2.5)

For a reason to be shown (see Eq. (2.14)),
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def N

R = YR• (2.6)
i=1

is referred to as the gas constant of the mixture. Let e, and s,, respectively, denote the specific

internal energy and the specific entropy of species i. Then the specific internal energy and the

specific entropy of the mixture are

def N

e = jYjej (2.7)

and

def N

s = rysi (2.8)
j=I

respectively. Note that, because the specific internal energy of any thermally perfect gas

species is a function of temperature only, each e1 is a function of T only. Let e, d die/dT for

each i. Then

def Nc,; = Z]Yei > 0 (2.9)
i=1

Replacing YN by I NjIY, (See Eq. (2.5)), Eq. (2.9) implies that

. N-I . .

C, = eN+ -Y,(ei-eN) > 0 (2.10)
i=1

Using Eqs. (2.3) and (2.4), and replacing pN by p - p p (See Eq. (2.4)), Eq. (2.2), (2.6)

and (2.7) imply that

p [PRN +Zp1,o,(P.-R , ]RN)T (2.11)

N-I

P=I

and

N-I

e=eN+_ (el eN) (2.13)

respectively. The key conclusions that can be drawn from Eqs. (2.11)-(2.13) are given in the

following. Eqs. (2.11) and (2.12) imply that
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p =pRT (2.14)

i.e., R is the gas constant of the mixture. Note that R,, i = 1, 2,..., N, are assumed to be constant

in the current study. As such, with the aid of Eq. (2.12), Eq. (2.11) implies that

dp= pRdT + TRNdp+ Tj (R -RN)dp, (2.15)
i=1

Because each ej is a function of T only, Eq. (2.13) implies that e is a function of T, p and p,,

i = 1,2,...,N-1. As such, with the aid of Eq. (2.10) and the relation de, = OdT, one has

N-1 dp +1IN-
de=cvdT- ,po(ei-eN) --+pZ(e,-eN)dp, (2.16)

It follows from Eq. (2.16) that

V. (2.17)

Because holding the value of p and po,, i = 1, 2,..., N-I constant is equivalent to holding the

value of pi, i = 1,2,...,N constant (see Eq. (2.4)), Eq. (2.17) implies that cv is the specific

heat of the gas mixture at constant volume. Because e is a function of T,

p and p,, i = 1,2,...,N-I, implicitly T is a function of e, p and p,, i = 1,2,...,N-1.

Substituting this functional relation into Eq. (2.11), one arrives at the conclusion that implicitly

Pis a function ofe, pand p,, i = 1, 2, 3, ..., N-1, i.e.,

p =P () (e, p, pý, p°,...., pN-I) (2.18)

Here p(I) is a function of e, pandp,,i = 1,2,...,N-1.

By eliminating dTand using the fact thatc, > 0, Eqs. (2.15) and (2.16) can be combined to

yield

dp= pRde =- +RNTT+- p,(e _eN)1 [ dp(+ E .RN)T-R (e, -eN) dp, (2.19)
C, [ PC, = i=1 C"

From Eq. (2.19), one arrives at the conclusion that

def ap pR (2.20)Pe =('--)pA•,o2.p_ -P- (220
ae CV
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def Op R N-I

P -(-) RT - p,(e -eN) (2.21)
PCi=

And, for i = 1,2,...,N-I,

e = ,pp2ph = (RN)T + - (e, -eN) (2.22)

Here, for any i = 1, 2,..., N- 1,

api

denotes the partial derivative of p with respect to p, assuming that, except p,, all other

parameters in the set {e, p, pA, P2,..., PN-I } are held constant. Note that an immediate result of

Eqs. (2.11), (2.21) and (2.22) is
N-I

P=PPP,+ZPP (2.23)
i=1

Next, we shall provide a brief discussion of the "frozen speed of sound" of a gas mixture. As a

preliminary, note that by using the thermodynamic relation s, = s, (T, p,), the relation p, = pYj,

and Eq. (2.5), Eq. (2.8) implies that s is a function ofT, p, and Y i = 1,2,...,N-1. As such

implicitly T is a function of s, p, and Yi, i = 1, 2,..., N-1. Substituting this functional relation

into Eq. (2.14) and observing that R is a function of Yi, i = 1,2,...,N-1 only (see Eqs. (2.5)

and (2.6)), one concludes that implicitly p is a function of s, p, and Yi, i = 1, 2,..., N-1, i.e.,

p=p ( 2) (Sp, I, 1,...,4Y_, ) (2.24)

Here p(2) is a function of s, pand Y,, i = 1,2,...,N-1. Let af be the frozen speed of sound

of the mixture, i.e.,

= op),,,, ,Y.- (2.25)

Note that, because of Eq. (2.5), holding the values of Y, , i = 1,2,...,N-I constant

automatically implies that the value of YN is also held constant. As such, adding YN to the list

of the subscripts of the partial derivative in Eq. (2.25) will have no impact on the derivative. In

the following, it will be shown that
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af = RTC(1++J7i~ (2.26)

To proceed, note that by using (i) pi = pYj, (ii) PJ = pYRPT, and (iii) the thermodynamic relation

ds1 = de-1  -, pd (2.27)

One concludes that

ds, = l - Rdp RAdY, (2.28)
d T p Yi

With the aid of Eqs. (2.6), (2.9) and (2.28), Eq. (2.8) implies that

ds_=CdT Rd -- + _(s,-R)d1l (2.29)T P i=1

Moreover, with the aid of Eq. (2.6), Eq. (2.14) implies that
N

dp = pRdT + RTdp + pT_ PAdY; (2.30)
i=1

-SN-1 dE (see Eq. (2.5)), Eqs. (2.29) and
By eliminating dT and using the fact that dYN - . ( 2) 2

(2.30) can be combined to yield

dp= pRT ds+RT(1+ )dp+PR4{1+Ri -RN)- R (s-sN)•Y (2.31)

An immediate result of Eq. (2.31) is

\aps =RT(I+-) (2.32)
aPP S,r ,y2,...,ru_- C

Eq. (2.26) now follows immediately from Eqs. (2.25), (2.32), (2.14), and (2.20). QED.

2.2 Governing Equations

We assume that the N gas species considered here share a common flow velocity u. Let the total

specific energy
def U

2

E = e+- (2.33)
2
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Letd),, i = 1,2,..., N, be the net mass of species i generated per unit time and per unit volume

from all chemical reactions involved. Because mass is conserved during any chemical reaction,

we have
N

Sco = 0 (2.34)
j=1

Furthermore, let
def def def def

u1 = P, u2 = pu, u3 = pE, u3+i = A (i=1,2,...,N) (2.35)

def def def def

f =pu, f 2 = pu +p, f 3 =u(pE+p), f3+, = up, (i=1,2,...,N) (2.36)

def def def def.

b, = 0, b2 = 0, b3 = 0, b3+, = w (i = 1, 2,..., N) (2.37)

Then the ID unsteady Euler equations for a chemically reacting mixture of N thermally perfect

gas species in thermal equilibrium with each other can be written as

auT + af ~bm m=12..N 2 (2.38a)

at 
&x

Note that: (a) In Eq. (2.38a), the equations with m = 1, 2, 3, respectively, represent the mass,

momentum, and energy conservation relations for the mixture. On the other hand, those

with m = 4,5, ..., N + 2, respectively, represent the mass conservation relations for

species i = 1,2,..., N-1. Moreover, with the aid of Eqs. (2.4) and (2.34), the mass conservation

relation for species N can be derived from the mass conservation relations for the mixture and

species i = 1,2,..., N-1. As such the former (i.e., the equation with m =N+ 3) becomes

redundant and therefore is not included in Eq. (2.3 8a). (b) Let ii, f, and b , respectively, be the

column matrices formed by um,fm, and bin, m 1,2,...,N+2. Then the matrix form of Eq.

(2.38a) is

at +af =b •(2.38b)at ax

(c )By using Eqs. (2.35) and (2.36), it can be shown that

f =u2, f 2 = (u2)-±+p, f3,= (u3 +p),f 3 ,+,-u 2u3+ (i=1,2,...,N-1) (2.39)
U1  U1  U1
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i.e., eachfm, m = 1,2,...,N+2can be expressed explicitly in terms ofp and u,,,

m = 1, 2,..., N + 2. Moreover, by using Eq. (2.18) and the relations

e U3 _ (U2 , P=U1 , pi =u3+i (i=1,2,...,N-1) (2.40)u, 2 •.ul

which follow from Eqs. (2.33) and (2.35), one concludes that implicitly p is also a function

of u,. , m= 1,2,...,N+2 . Thus implicitly fm, m= 1,2,3,...,N+2 , are functions of urn,

m= 1,2,...,N+2.

(d) It will be shown in Sec. 2.4 that, implicitly d),, i = 1, 2, 3, ..., N - I are also functions of

u,,, m= 1,2,...,N+2.

From the above discussions, one concludes that Eq. (2.3 8a) represents a system of N + 2

independent equations for N + 2 unknowns of u,,, m = 1, 2,..., N + 2.

2.3. Jacobian Matrix of Flux Functions

With the aid of Eqs. (2.18), (2.20)-(2.22), and (2.40), an application of the chain rule leads toap p.(U2_ Pe ap U 0 ppe 1
a, 2 ap' - p' a 3  P"'9u3+ p (i = 1,2,...,N-1) (2.41)

Hereafter, without using explicit notations, let it be understood that a partial derivative with

respect to any urn will always be evaluated assuming that, except urn, all other independent

variables in the set (ul, u2 . . ., UN+2} are held constant.

Let A be the (N +2) x (N +2) Jacbian matrix with the element on the m th row and the i th

column being Of,,, /u/. Then Eqs. (2.39) and (2.41) imply that
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0 1 0 0 0 ... 0
ep ep u2(lP) (2 Pe) Pye P Po "'Pp-

Pp _Pe U2(1--) u(2 --P) - pI. pp ... ~PN-I-p 2p p p
u H 2 e H Ue2Up -H+-- p--pI) H--p UPPl -b&).. PP

p2 p
U-- p 0 u 0 ... 0 (2.42)
P P

--- , 2  p 2  0 u ... 0
p p

-NPN--A 0 0 0 ... U

P P

where
def N 2H=E~p/p=-Y,(e,+.7'_+P,) (2.43)

i=l 2 pi

is the total enthalpy of the gas mixture. Note that: (i) the validity of the last equality sign in Eq.

(2.43) can be established using Eqs. (2.2), (2.3), (2.5), (2.7), and (2.33); and (ii) because
=" zN+2-G

af, / ax = = (af, lau,)(au, /x), Eq. (2.38b) is equivalent to

au au
at +_AU :-x =b(2.44)at ax

Furthermore, by using Eqs. (2.23), (2.33), (2.35), (2.36), (2.42), and (2.43), it can be shown that

IOU PU

pu 2 + PP, + ipIP piU2 
±+p

N-1

puE +u(ppp + Oi~p1 pi) u(pE+p)

= up, =f (2.45)

up2  uP2

UpNI UPN-1

According to a theorem given on pp. 1 1-12 in [22], Eq. (2.45) implies that each flux functionfo,

m = 1, 2,..., N + 2, is a homogeneous function of degree I in the variables u1, u2, ... , UN+2.
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For a reason that will become clear soon, next we will introduce a set of new independent

variables urn, m = 1, 2,..., N + 2, i.e.,

def def def def

u = p, u2 =U u3 = e, u3+, = Y, (i = 1,2,...,N- 1) (2.46)

By using Eqs. (2.3), (2.33), (2.35), and (2.46), it can be shown that

=U2  1 LU 3+, i=2 N ) (47MIl = uI, I_ U2 -, U_3 =L3 _- 2) ,3+ u_- u (i = 1, 2,..., N-I1) (2.47)
uU UU 2 u3 , =uI]u-

and

uI(u_2)2Ul =El, U 2 = MIM2, U3= _l3- + ,'2 I U3+i= MI!/3+i (i=1,2,...,N-1) (2.48)

Let T be the (N +2) x (N +2) matrix with the element on the m th row and the t th column

being u / au,. Then, by the chain rule, it can be shown that T- (i.e., the inverse of 2) is the

(N +2) x (N +2) matrix with the element on the m th row and the £ th column being au au,

By using Eqs. (2.47) and (2.48), one has

1 0 0 0 0 ... 0

u p-E -- 0 0 0 ... 0
p p

u 2 - E u I

P N -l 0 0 0 ... 0

T= -P1 0 0 --1 0 ... 0,

2

p p

P 2 o 10

PN-• 0 0 0 0..1
p 2 Pi
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1 0 0 0 0 ... 0"
U p 0 0 0 ... 0

E pup 0 0 ... 0

0 0 p 0 ... 0
T-1 = P (2.49)

0 0 0 p ... 0
P

PN-_ 0 0 0 0 ... p

P

Next, note that

tp + U-xp+ P L-P = 0x (2.50)
at Ox ax

ae+ U NU+uIe =0 (2.51)
at Ox pax

ae Pau Oe-+--+ -= 0(2.52)
at p ax Ox

and

p +, (io1,2,...,N-1) (2.53)
at ax Oax

form an equivalent non-conservative form of Eq. (2.38a). By using the relations (i)

ap Op Oae N-1 _ (2.54)
Ox +a Pex Oax

(ii)

ap, Oa(PY;) Y= P + P (i=1,2,...,N-1) (2.55)

Ox Ox Ox 'Ox

(iii) Yi/,o= p /(p2), i = 1,2,..., N-1, and (iv) Eq. (2.23), Eq. (2.51) can be recast as

au + p ap +au P,_,=_ __ p ae N- caYiO P Oax Up+-+E x O 0 (2.51a)

Ot p2 O Ox p O'x 1

Furthermore, with the aid of Eq. (2.50) and the fact that p, = pY,, i = 1,2,...,N-I,Eq. (2.53)

can be simplified as
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Si• + u SY, _'( 1, 2,..., N - 1) (2.53a)

at &x p

From the above discussions, one concludes that the system of equations represented by Eq.

(2.38a) is equivalent to the system of equations formed by Eqs. (2.50), (2.51a), (2.52), and

(2.53a). With the aid of Eqs. (2.46) and (2.49), and

u p 0 0 0 ... 0

P pE

dýf 0 P U 0 0 ... 0
_ p (2.56)

0 00 u 0 ... 0

0 0 0 0 u ... 0

0 0 0 0 0 ... u

The latter system can be expressed as

au am
-=_+A-_ T (2.57)
at -ax

where ii is the column matrix formed byu, m = 1, 2,..., N + 2.

Next, by the chain rule, one has au_,, / at = Z•-+ (a• / au,)(aul, I x). Thus, by the definition of

T, one concludes that aii / at = Tau / at. Similarly, one has aii I/Ox = Tau Thus, by

multiplying Eq. (2.57) from the left with T-', one concludes that

U + T_ AT =a (2.58)
at - &x

Because Eq. (2.58) is equivalent to Eq. (2.44), one concludes that (A -T-' AT)aU /ox 0- .The

last identity is valid if and only if

A = T-'AT (2.59)

In fact, with the aid of Eq. (2.23), Eq. (2.59) can also be established directly using Eqs. (2.42),

(2.49) and (2.56).

According to Eq. (2.59), A and A are related by a similarity transformation. Thus they

have identical eigenvalues, counting multiplicity [22]. However, compared with A, A has a
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simpler form. In particular, the (N +2) x (N +2) matrix A has the special property that the only

possible non-zero element on each of its lowest N-1 rows is the diagonal element u. As will be

shown shortly, because of this special property, the eigenvalues of A (and therefore those ofA)

can be evaluated in a straightforward fashion.

To proceed, let M be any K x K matrix with mr,, being its element at the i th row

and j th column. Let det M be the determinant of M. Then, according to a basic theory of

determinant, for any given i = 1, 2,..., K,

K

det M = rm,, x (cofactor of mr,j) (2.60)'
j=1

Furthermore, let (i) 1K denote the K x K identity matrix for any integer K > 0; and (ii) 2 be a

scalar. Then the special property of A referred to in the last paragraph coupled with a repeated

application of Eq. (2.60) implies that

det(A -2IN+12 ) = (u - 2)N-l x det(A3 - 213) (2.61)

where A is the 3 x 3 submatrix located at the top-left comer ofA, i.e.,

u p 0

defp

d_3 2 (2.62)
0 p

p

Because the eigenvalues of A (and thus those of A) are the roots ofdet(A-21,N+2)=0, by

combining (i) Eq. (2.61), (ii)

det(A3 -2A13) = (U A2)1(U A)2 -P(I + P) (2.63)

and (iii) Eq. (2.26), one concludes that A (and thus A) has three distinct eigenvalues, i.e.,

u + af , u - a, and u, with u being an eigenvalue of multiplicity N.

Even though they are not needed in the CE/SE development, for completeness, the eigenvectors

of the matrices A and A will be constructed and given explicitly in the remainder of this

subsection.
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Let M' denote the transpose of any matrix M. Let (= (0,2, ... ,I N+2) be an eigenvector

of A with the eigenvalue u + af, i.e., it is a nontrivial solution to

[:d- (u +af) I,+, ] = 0 (2.64)

According to Eq. (2.56), Eq. (2.64) is equivalent to

-af + p0 2 = 0 (2.65a)

P P0 N-I

2 - +P -. P t+ 0 (2.65b)
p0 p

P--, -- af 03 = 0 (2.65c)
P

and

afqo,=O ý=4,5,...,N+2 (2.65d)

Because af > 0 and p > 0, Eqs. (2.65a), (2.65c), and (2.65d) imply that

01 =-P 02; 03 = P"02; and Oe =0 for =4,5,...,N+2 (2.66)
af paf

Moreover, with the aid of Eq. (2.26), it can be shown that Eq. (2.65b) is automatically satisfied

if Eq. (2.66) is assumed. As such, Eq. (2.64) is equivalent to Eq. (2.66), i.e., any nonzero 5 that

satisfies Eq. (2.66) is an eigenvector of A with the eigenvalue u + aj. Let 0= 1. Then Eq.

(2.66) implies that the (N+ 2) x 1 column matrix

2, 1,__P, , 0,0..., 0 (2.67)
paf paf

is an eigenvector of A with the eigenvalue u + af, i.e.,

[A-(u. af )N+2-] ý()= 0 (2.68)

Similarly, it can be shown that the (N + 2) xI column matrix

(2) pep
-(2)I -P Pa, ,0,0...,0 (2.69)

is an eigenvector of A with the eigenvalue u -af, i.e.,
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[A-(u -af)IN+j( 2 ) =0 (2.70)

Next, let (01 = 0( 1 ... I N2E)be an eigenvector of A with the eigenvalue u, i.e., it is a

nontrivial solution to

[A_-uIN+2 •= 0 (2.71)

According to Eq. (2.56), Eq. (2.71) is equivalent to

P02 = 0 (2.72a)

P N-I

2 1 e 3 + EPp, 04+3 -0 (2.72b)
P P t=1

and

-£ 2 = 0 (2.72c)
P

Because p > 0 and P > 0, Eq. (2.72a) and (2.72c) reduce to

02 = 0 (2.73)

Thus Eq. (2.71) represents two independent conditions (i.e., Eqs. (2.72b) and (2.73)) for N + 2

variables. As such it can have only N linearly independent solutions. Let

_)def
• (m)l m , ,-,m) m=3,4,...,N+2 (2.74)

where (i)

03)_ PPe; and q 3) for £=2,3,...,N+2 (2.75a)
P

and (ii) for anym = 4,5,...,N+2,

0( P P _; and 01m) = 5,m for i = 2,3,...,N + 2 (2.75b)
P

with 5,' (any m and £ ) being the Kronecher delta symbol. Then it can be shown

that ý(m), m = 3,4,..., N + 2, are eigenvectors of A with the eigenvalue u, i.e.,

[A-UIN+2 ]M(m)=O, m=3,4,...,N+2 (2.76)

As will be shown, these eigenvectors are also linearly independent.
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Let D be the (N + 2) x (N + 2) matrix formed using the column matrix •(m), m = 1, 2,..., N + 2,

i.e., for any i, m = 1, 2,..., N + 2, the element on the t th row and m th column of D is the f th

element of the column matrix j('). Then (i)
22 2

P P PPe P p"p p P2 PP P PP_'

a1  af p p p p

1 1 0 0 0 ... 0

P P 0 0 ... 0
,D= pa1  pa1  (2.77)

0 0 0 1 0 ... 0

0 0 0 0 1 ... 0

0 0 0 0 0 ... 1

(ii) with the aid of Eqs. (2.4), (2.20) and (2.26), one has

det _2fD P+Pe >0 (2.78)

af )

i.e., D is nonsingular; and (iii) Eqs. (2.68), (2.70), and (2.76) are equivalent to

AD = DA (2.79)

where A is the (N + 2) x (N + 2) diagonal matrix defined by

"u+ af 0 0 0 ... 0"

0 u-a 1  0 0 ... 0
def 0 0 u 0 ... 0

A = (2.80)
0 0 0 u ... 0

0 0 0 0...u

Note that, because cD is formed using the eigenvectors q(-), m = 1, 2,..., N + 2, nonsingulaity of

cD implies that these eigenvectors are linearly independent.

For any square matrix M and any eigenvalue a of M, let ES (M a) denote the

eigenspace of M with the eigenvalue a. Then because (i) (r), m = 1,2,..., N + 2, are linear

independent, and (ii) the multiplicities of the eigenvalues u + a1 , u - a1 , and u are 1, 1, and N,
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respectively, one concludes that (i) {•()} forms a basis ofES (: a+uf); (ii+ {,2) }forms a

basis ofES(A: a-uf); and (iii) {1(3), (4),..., O(N+2) } forms a basis ofES (A: a+ u). In other

words, (i) a column matrix is an eigenvector of A with the eigenvalue u + af if and only it can

be expressed as 80(') with Pi being a nonzero scalar; (ii) a column matrix is an eigenvector of

A with the eigenvalue u - af if and only it can be expressed as /30(2) with 8 being a nonzero

scalar; and (iii) a column matrix is an eigenvector of A with the eigenvalue u if and only it can

be expressed as a linear combination of (m), m = 3,4,..., N + 2, where not all combination

coefficients vanish.

Next, by using the relation A = TAT- which follows from Eq. (2.59), Eq. (2.79) implies

that

A'T=,A (2.81)

where

def

" P T-'(D (2.82)

Because det (T-1) = pN+, > 0 (see Eq. (2.49)), Eqs. (2.78) and (2.82) implies that

det T' = det(T-), det (D > 0 (2.83)

i.e., T is nonsingular.

Let

S 2  PN-1(2.84a)
, - (U+ a, - (H+ uf , ,11_21...,I-(28aaf af af afaf a

I-I
V/2 • ,o,__(u-af), ,O(H-uaf), PI , 0 .. ,P- (2.84b)

af af af af af af

-(3) ,e pp. ,PR e pp f-(af)2 PiPe P2Pe PN-Pec
.P P P RP P P

and, form =4,5,...,N+2,
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_(,(),ef p 2 p p, p p,._u p PR E ppip, , _pn-3 PP2P__Op-_ -3

P P P P P (2.84d)
PPN-..p o, _,53), m=4,5,...,N+2

P

Then, with the aid of Eqs. (2.14), (2.20), (2.26), (2.43), (2.49), (2.77) and (2.82), it can be

shown that the nonsingular matrix T is formed using the column

matrices V,(m) , m = 1,2,..., N + 2 . As such, (i) these N +2 column matrices are linearly

independent; and (ii) Eq. (2.81) is equivalent to

SA(+a )Iu ]•(I) :0 (2.85a)

[A-(u+af -N+2V

P (- af)IN+ 2 Iq" = 0 (2.85b)

and

-(i)
[A-uIN+2]VI =0, m=3,4,...,N+2 (2.85c)

Thus (i) {IV"')} forms a basis ofES (A: a + uf); (ii) {q(2)} forms a basis ofES (A a - ut); and

(iii) I..., (+2)}forms a basis ofES (A_:a + u). In the following, bases with simpler

structure will be constructed.

As a preliminary, note that Eqs. (2.26) and (2.43) implies that

HgE-'E°(af)2 PP( 1 +Pe): P (2.86)
Pe P Pe P P Pe

Then, (i) Eqs. (2.84a), (2.84b), and (2.84c) imply that

0 =-V a I l,u+af,H+uaf,,..., AP-. (2.87a)
P P IP I . P

O • - ' U-af,H-uaf, Pl. P P (2.87b)

= p -(3) p(af)2 )'N-Il

V/f =1,u,H- A P2 ,... (2.87c)
PP, P, P P P

and
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def,-(m) PP._, -(3) P ,5,-3 ,-3 -3=--'P '° ""PN1 28d
Pe Pe (2.87d)

m =4,5,...,N+2

Let® be the matrix formed using the column matrices ((),m = 1,2,...,N+2, i.e.,

1 1 1 0 0 ... 0

u+af u-af u 0 0 ... 0

H+uaf H-uaf H--P(af) 2 
-'PI p2p,2 P 2pp,,_

Pe Pe Pe Pe

p p 0 0 0 (2.88)

p2  p2  p2  p ... 0
p p p

PN-I PN-1 PN-I 0 0 ... p
P P P

Then, with the aid of the fact that 'is the matrix formed using /m) , m =1, 2,..., N + 2, Eqs.

(2.87a)-(2.87d) imply that

O = WQ (2.89)

where

0 0 0 0 ... 0
P

p
0 0 0 0 ... 0

P

Q =f 0 p iP,,, ~PP2  PP (2.90)

0 0 0 1 0 ... 0

0 0 0 0 1 ... 0

0 0 0 0 0 ... 1

Because det Q = p (af )2/(,sP,) > 0, Eqs. (2.89) and (2.83) implies that

det O = det T -det Q > 0 (2.91)
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i.e., 0 is nonsingular. In turn, this implies that P(m), m = 1, 2,..., N + 2, are linearly

independent. Moreover, because AQ= QA, Eqs. (2.81) and (2.89) implies that

AO = OA (2.92)

i.e., Eqs. (2.85a)-(2.85c) remain valid if, for each m = 1, 2,...,N + 2, V/(m) is replaced by P().

As such, one concludes that (i) {W1i)} forms a basis ofES(A: a+ uf); (ii) {§(2) } forms a basis

ofES (A a-u1 ); and (iii) {l(3),9 (4),.. ., (N+2)} forms a basis ofES (A: a + u).

Note that, for the special case N= 5, (i) [p/ [2ia]O§(), [pi/ia1] §(2), and fi(3)

respectively, reduce to the second, the third, and the first column matrices contained in the

matrix S; and (ii) for each m = 4, 5, 6, 7, P(") reduces to the m th column matrix contained in S.

Note that the symbols p, p2,..., PN-, and af used here, respectively, are replaced by

C1, C2,. .. , CNvl and a.

2.4 Evaluation of Thermodynamic/Chemical Parameters

Let (i) h, and c,, be the specific enthalpy and the specific heat at constant pressure

of species i, respectively; and (ii)
, def def defh, = Mh, h9, = M~s,, cv, = Mjcp, (2.93)

Because M, and s, are the molecular weight and the specific entropy of species i, respectively,

Eq. (2.93) implies that h1, S,, and 6p, are the molar specific enthalpy, the molar specific entropy,

and the molar specific heat at constant pressure of species i, respectively.

Because the gas mixture is thermally perfect (which is a good approximation as long

as each p, is in the order of I atm or less), for each species i, L/= Li (T) and ýP, = 6p, (T).

Furthermore, in the current study, each 3,, (T) is approximated using a polynomial of T, i.e.,

ýP, (T) 4

_p()_ = Z aj'T! (2.94)
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where the coefficients a,, can be found in NASA CEA program data base. By using Eq. (2.94)

and the relation

h •(T) js c(T')dT'+/• (2.95)

where /f is the molar heat of formation for species i at the standard conditions

T =Trf =293.15K andp, =1 atm, it can be shown that

hi (T) 4 M=a,5 +E atT (2.96)--Ra. 1=0 ý+l

Here

def hf a
Ri ae i r e )t+ 1 (2 .9 7 )

can also be found in NASA CEA Program. As such h, can be evaluated using Eq. (2.96). In

turn, h, and e, can be evaluated using the relations (i) hi = hi / M, and

(ii) e, =- h, - pi / p, = hi - RAT.

Next, by using (i) Eqs. (2.1) and (2.93), (ii)R, = MR,, and (iii) the thermodynamic

relation Tds, = dhk - dpi / pi , one concludes that

di' = d R /_ (2.98)
T (9

Let SO denotes the value of 9, at p, atm. Then 9o 9js (T) and Eq. (2.98) implies that
A

.~~(T)- , JrýpC O~
s°ie(T)f= T+ )°(T•) (2.99)

By using Eqs. (2.94) and (2.99), it can be shown that

S io ( T_ _ _) 4
=a,6 + a,,InT + .V=oT (2.100)

where

def 9j0(Tf 4
R( aiolnTf-X'(T =' (2.101)

can be found in NASA CEA Program. As such 9o can be evaluated using Eq. (2.100).
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Let ko (T) and ko (T), respectively, denote the molar specific enthalpy and the molar

specific Gibbs free energy of species i at the temperature T and the pressure = I atm. Then, by

definition,

h ( (T) - Thj (T) (2.102)

Because ,i is assumed to be independent of pressure, 4,0(T) = 4i (T) in current study. Thus, with

the aid of Eqs. (2.96) and (2.100), Eq. (2.102) implies that

+a +(ajo ai)_ajohinT_ a,- (T)t  (2.103)
RkT T 1=0 i(g + 1)

To proceed, a set of Nr chemical reactions involving N chemical species is represented by the

following reaction equations:

N N

Yv,,A, v,,A (r=l,2,3,...,Nr) (2.104)

Here (i) A, denote the i th chemical species, and (ii) vr and v", respectively, denote the

stoichiometric coefficients of reactants and products for species i in the r th reaction. Let

(i) Kfr and Kb,, respectively, denote the forward (i.e., left to right) and the backward (i.e., right

def

to left) reaction rate constants of the r th reaction; (ii) ni = p / M1 =the molar concentration

(moles per unit volume) of species i; and (iii) (h,),) denote the molar generation rate (moles per

unit time and per unit volume) of species i contributed by the

r th reaction. Then the law of mass action implies that

N N
(h)r =(V ,ri- (n) Kb7,.I'- (nf)v_ (2.105)

Here Kfr and Kbr can be evaluated using the Arrhenius forms, i.e.,
_E = CT~x _Ebr•

Kfr (T) =Afr T Bexp(- fr) and Kbr(T) = AbT) exp (2.106)

with Afr , Abr , Bfr , BbP, Ef, and Ebr being given constant coefficients. The values of

these coefficients for some chemical reactions are tabulated in Appendices I and II.

If the kinetic data of the backward reactions were not available, Kbr may be evaluated

using the relation
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Kbr = Kf / Keqr (2.107)

where Keqr, the equilibrium constant for the r th reaction, is a function of T and can be

evaluated using the relation

"K-qr (T) = V) (2.108)geq(Z)-k uZ)exp 1 -j•=3(,. (T)]--

Next, with the aid of Eq. (2.105) and the relations: (i)

N,

d•, = M Y (h),) (2.109)
r=I

(ii) n,=pIM,, and (iii) Kfr,. =Kf(T) and Kb, =Kbr(T), r=1,2,...,N,. each d), can be

explicitly expressed as a function of p,,2,...,,oN and T, i.e.,

N, "' N ;

d, = 1 M)[(ri-YdKfr (T)U(e _KyM, )j (2-110)

As will be shown shortly, alternatively each 6ib can also be considered as an implicit function of

the conservative variables u. , m = 1,2,..., N + 2. In fact, evaluation of a&, / N,, for all

i = 1,2,..., N-i and m = 4,5,..., N + 2 is required for a later application. As such, in the

remainder of this section these derivatives will be expressed explicitly in terms of a set of flow

and thermodynamic variables.

To proceed, first Eq. (2.110) is used to obtain

--= M,_,(v;,-v,) f 1(n,) K~n,)k, i,k =1,2,...,N (2.111)
aPk r=, Pk =

and

Od'-=M (v,'-v) ' f, 1-(n,)-,(-K,.-() i1, 2,...,N (2.112)

with
def dKfr(T) .def dK (TKf T and Kb,. = b(T) (2.113)

dT dT
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Here (i) each Dohi / aPk is evaluated assuming that, except Pk, all other independent variables in

the set { pl, pE,..., p, T} are held constant; and (ii) each ab, / aT is evaluated assuming that

p, p,,..., pN are held constant.

N-I N-1
Next, because (i) pi = u3.,, i = 1, 2,..., N- 1, and (ii) PN = P- p, =u - = u,'one has

OA, _m3+, i=1,2,...,N-1; m=1,2,...,N+2 (2.114)

and
I if M I

ap,=0 if m=2,3 (2.115)

aur -1 ifm =4,5,...,N+2

Here, as in earlier cases, any partial derivative with respect to any conservative variable un is

evaluated assuming that, except ur, all other variables in the set {u1, U2 ,..., UN+2 ) are held

constant.

Next, with the aid of Eq. (2.35), the first equation in Eq. (2.40) implies that

de= 1[(u2 -E)du, -udu 2 +du 3] (2.116)

Also, with the aid of Eqs. (2.13) and (2.33), Eqs. (2.16) and (2.116) imply that

I [( u2  N+2
dT =- e -- es du, - udu2 + du3 - Z (e.-3 - eN)du,,l (2.117)

pc, [_ 2 N) m=4

Eqs. (2.117) implies that T is an implicit function of uI, u,..., UN+2 with

T- (u T- uand -=- (2.118)
I (2 Nu 2  pc-, u3  pe,

and

,T eN-e. 3  m=4,5,...,N+2 (2.119)

OUr PC"

Note that: (i) each d), is a function of the independent variables p•, pz,..-, ,N, and T, and (ii) the

independent variables themselves are functions ofUn, m = 1, 2,..., N + 2. Thus each ob1 can also

be considered as a function ofur., m = 1, 2,..., N + 2. Moreover, by using the chain rule, each
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&5 / aum (i = 1,2,...,Nandm= 1,2,...,N+2) can be obtained with the aid of Eqs. (2.111),

(2.112), (2.118), and (2.119). In particular, for i = 1, 2,..., N - 1 and m= 4,5,..., N + 2, one

has

7N- 8 aPk au. O, PN au ,T

OUm k=1 8Pk OU 8PN Um OT Ou5

a (Od, mi. a05, (eN -em-3

aPm-3 apN OT p 'c,,

N, Nv=M' E'V "' K "m3 V'N .jWv
)=K fr -3 P-N (= ) (2.120)

N .1

KrVr(m-3) _VrN )T H(W)",D

Pm,-3  PN t=1 I

e. " e,_ )'r -Nb (VH V".'l ) [

+ M e e • N, (vri-L.l) l (nl)

i==1,2,...,N-1; m = 4,5,...,N+2

2.5 Flow Equations in Multi-Dimensional Space

In the past, the fundamental behavior of cavity flows was known as two-dimensional [8].

Equation (2.121) shows the vector form of the two-dimensional flow equations in Cartesian

coordinates, including the continuity equation, the Navier-Stokes equations, the energy

equation, and one species equation:

XU +F +G aFv aGV 0
at 8x Oy Ox Oy (2.121)

where the flow variable vector

P
PU

U= pv

pe

PYf

the inviscid flux vectors are
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PU

PU2 +p

F= puv

u(pe + p)

pUYf

PuV

G= ,v2 + p

v(pe + p)

and the viscous flux vectors are

0

U 'xx + VTxy -qx

0

Txy

U%, +vry -qy

,-P~fYf

In the above equations, p is the density; u and v are velocity components in the x and the y

directions, respectively; p is the static pressure; e = E + ½ (u2 + v2) is the specific total energy

with E as the specific internal energy. We assume the fluid is ideal and polytropic. Due to the

equation of state of an ideal gas, p = (y - l)p c, where y = Cp/Cv is the specific heat ratio and it is

a constant due to the polytropic gas assumption. In the viscous vectors, Tx,, Txy, and ryy are

stress components, and q, and qy are the heat conduction fluxes in x and y directions,

respectively. Yf is the mass fraction of fuel. The diffusion velocity components, z and ý are

calculated by Fick's law:
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Yf•f = -D ay-r
Yx , (2.122a)

Y)J = -D &Yf

Cy , (2.122b)

where D is the mass diffusivity of fuel in the gas mixture. The molecular viscosity p. is

calculated using Sutherland's law [12] and the Lewis number Le =1 is assumed to calculate the

mass diffusivity D. In numerical calculations, the above governing equations are

nondimensionalized by the free stream conditions, i.e., velocity components by u,, density by

p., pressure by p.u. 2, and the total energy by p.uCOc2 . The subscript 0o denotes the free stream

condition. The cavity depth d is used as the length scale, and the time scale is d/u,,.
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3. The CESE Method

The CESE method is a novel numerical framework for high-fidelity solution of hyperbolic

conservation laws. Originally developed by Chang and coworkers [13-18], the tenet of the

CESE method is a unified treatment of space and time in calculating flux balance. Contrast to

modem upwind schemes, no Riemann solver and/or a reconstruction procedure is used as the

building block of the CESE method. As a result, the logic and computational counts of the

CESE method are simpler and more efficient. Based on the CESE method, computer programs

for solving unsteady flows in one, two, and three spatial dimensions for structured, and

unstructured meshes, and for meshes composed of mixed elements have been developed.

These solvers have been parallelized based on domain decomposition in conjunction of the use

of MPI. Since no Riemann solver is used, we have straightforwardly extended the CESE

method for flows with complex physical processes, including detonation, cavitations, and

MHID.

Previously, various flow phenomena have been calculated by using the CESE method.

In particular, the CESE solver is capable of calculating high-speed compressible flow as well as

flows at very low Mach numbers without applying preconditioning to the governing equations.

The CESE method is indeed an all speed solver. Moreover, the CESE method is capable of

simultaneously capture strong shock waves and the acoustic waves in the same computational

domain, while the amplitude of the pressure jump across the shock wave would be several

orders of magnitude higher than that of the acoustic waves.

The CESE method employed in the present paper is based on the use of quadrilateral

cells on the x-y plane [17], which was extended from the original CESE method. Note that the

original CESE method for two-dimensional flows was designed based on the use of triangular

cells. In the present paper, a brief discussion of this particular extension of the CESE method is

provided. The discussions here will be focused on the space-time geometry of the CESE

method. We remark that the basic structure of the CESE method can always be easily grasped

by visualizing the space-time geometry of conservation element (CE), solution element (SE),

and how they facilitate the space-time integration. The detailed algebraic equations of the

method, perhaps, only reaffirm the structure of the method. We of course refer the interested

readers to the cited references for all details.
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To proceed, let E 3 denote a three-dimensional Euclidean space, in which x, = x, x2= y,

and x3= t. Let V. be the divergence operator in E3, and hm de (ffv)m, (g- g,)mUm ] for

m=1, 2, 3, 4, and 5. Here (f- f,)m, (g- g,,)' and u. are the mth components of F-Fv, G-Gv,

and U, respectively, in Eq. (1). Aided by the above definition, for each m=l, 2,..., 5, the flow

equations, Eq. (1), becomes

V-h,, =0, (3.1a)

Apply Gauss's divergence theorem to Eq. (3a) and we get

h.-v m, (3.1b)

As depicted in Fig. 1(a), S(V) is the boundary of the space-time region V in E3 and ds is a

surface element vector pointing outward. Equation (3b) states that the total space-time flux hm

leaving volume V through S(V) vanishes. All mathematical operations can be carried out as

though E3 were an ordinary three-dimensional Euclidean space. The CESE method is designed

to accurately integrate Eq. (3b) to provide high fidelity results of evolving u. in the space-time

domain.

The CESE method is a family of numerical schemes, with the a scheme [13] as its

backbone. Contrast to conventional finite volume methods, the CESE method has separate

definitions of conservation element (CE) and solution element (SE) in constructing the

discretized equations for integrating Eq. (3b) in the space-time domain. CEs are

non-overlapping space-time sub-domains such that (i) the whole computational domain can be

filled by the CEs; (ii) flux conservation can be enforced over each CE and/or over a union of

several neighboring CEs; and (iii) inside a CE, flow discontinuity is allowed. On the other hand,

SE are non-overlapping space-time sub-domains such that (i) SE do not generally coincide with

a CE; (ii) the union of all SEs does not have to fill the whole computational domain; (iii) flow

variables and fluxes are discontinuous across interfaces of neighboring SEs; and (ii) within a

SE, flow variable and flux function are assumed continuous and they are approximated by using

a prescribed smooth function. In the present paper, a first-order Taylor series expansion is used.

Thus the discretized flow variables and fluxes are linearly distributed inside each SE.

The time marching strategy in the CESE method is designed based on a space-time staggered

mesh stencil composed of CEs and SEs. Note that when integrating Eq. (3b) over the boundary

of a CE, the surface element of S(V) in Eq. (3b) always lying inside a SE, where flow variables
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and fluxes are continuous. We remark that the paradigm of the Godunov schemes is that one has

to resort to the use of a Riemann solver to reckon the nonlinear flux function at the cell

interfaces. In the CESE method, however, flow information propagates only in one direction

across all cell interfaces, i.e., towards future. Thus, the space-time flux integration can be

straightforwardly carried out without reconciling the values of flux functions at cell interfaces

through the use of a Riemann solver. In other words, contrast to the upwind methods, there is

no cell interface, across which two way traffics of flow information propagate. Thus, the CESE

method can capture shocks without using a Riemann solver. In what follows, we discuss

specific space-time geometry of the CE and SE in integrating Eq. (3b).

Consider Fig. 1 (b). The x-y plane is divided into non-overlapping quadrilaterals. Two

neighboring quadrilaterals share a common side. Vertices and centroids of quadrilaterals are

marked by dots and circles, respectively. Q is the centroid of the quadrilateral B1B2B3B4.A1, A2,

A3, and A4, respectively, are the centroids of the four quadrilaterals neighboring to the

quadrilateral B1 B2B3B4. Q*, marked by a cross in Fig. 1(b), is the centroid of the polygon

A1BIA 2B2 A3B3A4B4. Hereafter, point Q*, which generally does not coincide with point Q, is

referred to as the solution point associated with Q. Note that points A*, A2, A3, and A4, which

are also marked by crosses, are the solution points associated with the centroids A&, A2, A3, and

A4, respectively.

To proceed, we consider Fig. 1(c). Here t= nAt at the nth time level, where n = 0, 1/2, 1,

3/2, ... For a given n>0, Q, Q', and Q", respectively, denote the points on the n, the (1-1/2 n)h,

and (1+1/2n)th time levels with point Q being their common spatial projection. Other

space-time mesh points, such as those depicted in Fig. 1(c), and also those not depicted, are

defined similarly. In particular, Q, A,', A2, A;, and A; lie on the nth time level and they are the

space-time solution mesh points associated with points Q, A1, A2, A3, and A4 .

Q A*, A',;,AX,and 4 lie on the (1-1/2n)th time level and are the space-time solution mesh

points associated with points Q', A,, A2, A3, and A4 .

With the above preliminaries, we are ready to discuss the geometry of the CE and SE

associated with point Q*, where the numerical solution of the flow variables um at nth time level

are calculated based on the known flow solution in all points at a previous time level, i.e., n-1/2,

denoted by superscript prime. First, the solution element of point Q*, denoted by SE(Q*), is
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defined as the union of the five plane segments Q'Q"BBl, Q'Q"B2B2, Q'Q"B3B3, Q'Q"B"B4,

and A1B1A2B2A3B3A4B4 and their immediate neighborhoods.

To integrate Eq. (3b), four basic conservation elements (BCEs) of point Q* are
constructed, and they are denoted by BCEI(Q), with 1 = 1, 2, 3, and 4. These four BCEs are

defined to be the space-time cylinders AIB 1QB4AIB;Q'B4 , A2B2QB 1A2B2Q'B,

A3B3QB 2A3B3Q'B2 , and A4B4QB3AaB4Q'B3, respectively. In addition, the compounded

conservation element of point Q, denoted by CE(Q), is defined to be the space-time cylinder

ABA 2B2A3B3A4B4A;B;A'2B; A;B;A'4B4, i.e., the union of the above four BCEs.

To proceed, the set of the space-time mesh points whose spatial projections are the

centroids of quadrilaterals depicted in Fig. 1 (b) is denoted by Q and the set of the space-time

mesh points whose spatial projections are the solution points depicted in Fig. 1(b) is denoted by

92*. Note that the BCEs and the compounded CEs of any mesh point e 9 and the SE of any

mesh point E D* are defined in a manner identical to that described earlier for point Q and Q*.

With the clear definitions of the CE and SE in above, the numerical integration of the
space-time flux balance, i.e., Eq. (3b), in the present modified CESE method can be

summarized as follows.

For any Q* c * and (x,y,t) c SE(KY*), the flow variables and flux vectors, i.e.,

ur (x, y, t), f. (x, y, t), and g,, (x, y, t), are approximated to their numerical counterparts, i.e.,

um (x, y, t), f,* (x, y, t), and g* (x, y, t), by using the first order Taylor series expansion with

respect to Q* (xQ.,yQ.,tn). Thus the space-time flux vector hm(x,y, t), can be replaced by

h*,(x,y,t;Q*) and the numerical analogue of Eq. (3b) for each m=l,2,...,5, is

I(CE(Q) h*n ds = 0, (3.2)

Equation (3.2) states that the discretized total flux of h , leaving CE(Q) through its boundary

vanishes. We note that Eq. (4) can be written in terms of independent discrete solution variables

which are the main flow variables and their spatial derivatives, (u.)Q. and (umy) Q. in this

approximation process.
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By conducting the integration of Eq. (4) over the CE= BCEI+BCE 2+BCE3+BCE4, the

discrete flow variables (u,r,)Q. associated with the space-time point Q*, can be

straightforwardly evaluated. This is achieved by the aid of the geometrical information of

CE(Q*) as shown in Fig. 1, and the linear distribution of (u.)Q. in each SE due to the adopted

first-order Taylor series expansion for the flow variables inside the SE as the discretization

process.

The calculation of the gradient variables, i.e., (u,,)Q., and (U,,y)Q. is base on a

finite-difference approach in conjunction with the standard CESE artificial damping functions,

i.e., the a-s-ca scheme, in which parameter c is associated with the overall damping effect and cc

is for shock capturing. In contrast to the original CESE method, the calculation of (u,, )Q., and

(uy)Q. has nothing to do with the space-time flux conservation.

To calculate unsteady flows, the non-reflecting boundary condition treatment is

critically important. Without an effective treatment, the reflected waves would inevitably

contaminate the evolving flow solutions. Numerical treatments to achieve non-reflecting

boundary condition in the setting of conventional CFD methods have been an active research

subject for a long time. In general, most of treatments were developed based on theorems of the

partial differential equation, and they could be categorized into the following three groups: (i)

applying the method of characteristics to the discretized equations, (ii) the use of the buffer

zone or a perfectly matched layer, and (iii) applying asymptotic analytical solution at the far

field.

In the setting of the CESE method, we only concern the integral equation. The above

ideas of treating non-reflective boundary are not applicable. Instead, the non-reflecting

boundary condition treatments in the setting of the CESE method is based on flux conservation

in the vicinity of the computational boundary [18]. In other words, the present nonreflecting

boundary condition treatment is equivalent to letting the incoming flux from the interior

domain to the boundary CE smoothly exit to the exterior of the domain. In the setting of the

CESE method, the numerical implementation of this flux-based method is extremely simple

due to the fact that all flow information must propagate into the future. Chang and coworkers

[18] have provided detailed discussions of various implementations of the above principle. It
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has been demonstrated that only negligible reflection occurs when a shock passes through the

domain boundary. Moreover, along a wall boundary, a unified boundary condition for viscous

flows is used. Based on local space-time flux conservation, a no-slip condition will be

automatically enforced when the viscosity is not null. Again, the basic principle is based on the

space-time flux conservation over CEs near the computational boundary.
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4. Results and Discussions

Three sets of numerical results are presented: (i) supersonic cavity flow in the supersonic

combustion facility by Gruber et al. [1, 2] and Baurle et al. [5], (ii) Stalling and Wilcox's cavity

flow test [20], and (iii) cavity flows with fuel injection. The first test is to assess numerical

accuracy of the calculated frequencies. The results will be compared with previously reported

data and Rossiter's empirical relation [6]. The second test is to assess numerical accuracy of

time-averaged amplitudes of pressure fluctuations along the cavity walls. The results will be

compared with the experimental data [20]. In the third test, cavity flows with downstream as

well as upstream injections are simulated. We will show that a cavity flow with a downstream

transverse injection can effectively generate strong vortices and acoustic waves for fuel/air

mixing enhancement.

4.1 Frequency Calculations

The first numerical example follows the testing condition in the US AFRL supersonic

combustion facility reported in [1, 2, 5]. A supersonic flow at Mach 2 and Reynolds number of

4x10 5 passes a swallow cavity with L/d = 7.76, where L and d are the length and depth of the

cavity, respectively. The computational domain outside of the cavity is 0•< x < 11.52, and

0•< y •3.82, where x and y are nondimensionalized by d. Mesh points were clustered at the

forward and aft bulkheads, at the plane spanning over the cavity mouth, and along the lateral

sidewalls of the cavity. 143,000 quadrilateral elements are used for the computational domain.

Figure 2 shows the mesh, in which one of every five mesh lines is displayed. The

non-reflecting boundary condition is applied to the free stream surfaces and outlet. Initially,

velocities inside the cavity are set to zero, and the density and pressure of the whole domain are

set to the free stream values. The time step was chosen such that CFL & 0.8 based on the free

stream condition.

Figure 3 shows a series of snapshots of pressure contours, vorticity contours, and

numerical Schlieren images, which are contour plots of

jVpj = I(-•J2 +3•j2 . (4.1)
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These figures demonstrate very complex flow features, including traveling acoustic waves,

vortex generation at the leading edge, shedding vortices in the free shear layer, and pressure

waves impinging on and rebounding from the aft wall. The interactions between the rebounding

pressure waves and shed vortices form a feed back loop which leads to self-sustained

oscillations as illustrated by Rossiter [6]. In Fig. 3(b), periodic shear layer deflections in the

transverse direction could be clearly discerned. Inward deflection results in mass addition into

the cavity; outward deflection expels mass from the cavity. This periodic mass

addition/expulsion mechanism enhances fuel/air mixing. Moreover, flapping shock/expansion

waves emanating from the upstream bulkhead of the cavity, shown in Fig. 3(c), can also

enhance fuel/air mixing.

Figure 4 shows pressure histories on the aft wall and on the floor. The flow has reached

a self-sustained oscillatory state after about 15 tý, where t, = d/ U,,. However, the oscillation

pattern changes from cycle to cycle, and we cannot clearly identify the period of the oscillation

cycles. This is consistent with experimental observation reported in [19]. The amplitude of the

pressure oscillations at the aft wall is much higher than that at the cavity floor due to the mass

addition/expulsion mechanism near the aft wall. Figure 5 shows the frequency spectra of the

pressure data in Fig. 4. The predicted values of the dominant frequencies compare well with the

Rossiter relation [6] and the numerical results by Baurle et al. [5]. The Rossiter formula is

f U m 1 (4.2)

L 'M / 2

where f. is the resonant frequency corresponding to the mth mode, U is the main stream

velocity, L is the cavity length, = 0.513, and K= 0.57 [5]. Figure 5 shows five calculated

dominant frequencies, i.e., 2523, 3533, 4290, 5804, and 8579Hz, compare well with the 3r', 4th,

50', 6h, and 901 mode predicted by the Rossiter relation. The first and second frequency modes

also compared well with Baurle's calculation.

To proceed, we perform simulation of the same cavity flow with an added transverse

injection at upstream of the cavity. The free stream flow condition and the cavity geometry are

identical to that shown in Figs. 3-5. The injection jet opening is 0.2 d, and its center is located

1.0 d upstream from the leading edge of the cavity. A choked jet with a uniform condition at the

opening is imposed:
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